3 Determination of one-site anisotropy energy

Suppose that we describe the properties of a magnetic system with an anisotropic Heisenberg Hamiltonian as follows:

$\displaystyle \mathcal{H}=-\frac{1}{2}\sum_{i,j}\mathbf{S_{i}}\mathcal{J}_{ij}\mathbf{S_{j}}- \sum_{i}\mathrm{d(\mathbf{S_{i}})}$ (144)

where $ \mathcal{J}_{ij}$ and $ \mathrm{d(\mathbf{S_{i}})}$ are matrices $ 3 \times 3$. If we assume that the on-site anisotropy is uniaxial and its easy axis is parallel to Z axis, we can rewrite the Hamiltonian as:


$\displaystyle \mathcal{H}$ $\displaystyle =$ $\displaystyle -\frac{1}{2}\sum_{i,j}\mathbf{S_{i}}\mathcal{J}_{ij}\mathbf{S_{j}}- \sum_{i}\mathbf{S_{i}}\mathrm{d_{i}}\mathbf{S_{i}}$ (145)
$\displaystyle \mathrm{d_{i}}$ $\displaystyle =$ $\displaystyle \left(
\begin{array}{ccc}
0 &0 & 0 \\
0 & 0 & 0 \\
0 & 0 & d^{zz}_{i}\\
\end{array} \right)$ (146)

In spherical coordinates we can write $ \mathbf{S}_{i}$ as a function of the polar and azimuthal angles $ \theta_{i}$ and $ \varphi_{i}$, respectively.

$\displaystyle \mathbf{S}_{i}=(\sin\theta_{i}\cos\varphi_{i}, \sin\theta_{i}\sin\varphi_{i},\cos\theta_{i})$ (147)

and evaluate the second derivatives with respect to the polar and azimuthal angles.
$\displaystyle \frac{\partial^{2}\mathbf{S}_{i}}{\partial\theta_{i}^{2}}$ $\displaystyle =$ $\displaystyle -(\sin\theta_{i}\cos\varphi_{i}, \sin\theta_{i}\sin\varphi_{i},\cos\theta_{i})=- \mathbf{S}_{i}$ (148)
$\displaystyle \frac{\partial^{2}\mathbf{S}_{i}}{\partial\varphi_{i}^{2}}$ $\displaystyle =$ $\displaystyle -(\sin\theta_{i}\cos\varphi_{i}, \sin\theta_{i}\sin\varphi_{i},0)$ (149)

If the spin i belongs to the plane XY then Eq. (A.25) is reduced to :

$\displaystyle \frac{\partial^{2}\mathbf{S}_{i}}{\partial\varphi_{i}^{2}}=- \mathbf{S}_{i}$ (150)

Now we evaluate the second derivatives with respect to the polar and azimuthal angles of the energy:

$\displaystyle \frac{\partial^{2}E\{\mathbf{S}_{i}\}}{\partial\theta_{i}^{2}}$ $\displaystyle =$ $\displaystyle -\frac{\partial^{2}}{\partial\theta_{i}^{2}}\Bigl( \mathbf{S_{i}}...
...S_{i}}\mathcal{J}_{ij}\frac{\partial^{2}\mathbf{S}_{j}}{\partial\theta_{i}^{2}}$ (151)
$\displaystyle \frac{\partial^{2}E\{\mathbf{S}_{i}\}}{\partial\varphi_{i}^{2}}$ $\displaystyle =$ $\displaystyle -\frac{\partial^{2}}{\partial\varphi_{i}^{2}}\Bigl( \mathbf{S_{i}...
..._{i}}\mathcal{J}_{ij}\frac{\partial^{2}\mathbf{S}_{j}}{\partial\varphi_{i}^{2}}$ (152)

Due to the fact that the spin variables are independent, the equations above can be reduced to:


$\displaystyle \frac{\partial^{2}E\{\mathbf{S}_{i}\}}{\partial\theta_{i}^{2}}$ $\displaystyle =$ $\displaystyle -\frac{\partial^{2}}{\partial\theta_{i}^{2}}\Bigl( \mathbf{S_{i}}...
...artial^{2}\mathbf{S}_{i}}{\partial\theta_{i}^{2}}\mathcal{J}_{ij}\mathbf{S_{j}}$ (153)
$\displaystyle \frac{\partial^{2}E\{\mathbf{S}_{i}\}}{\partial\varphi_{i}^{2}}$ $\displaystyle =$ $\displaystyle -\frac{\partial^{2}}{\partial\varphi_{i}^{2}}\Bigl( \mathbf{S_{i}...
...rtial^{2}\mathbf{S}_{i}}{\partial\varphi_{i}^{2}}\mathcal{J}_{ij}\mathbf{S_{j}}$ (154)

The free energy of the system $ \mathcal{F}$ is related with the second derivatives above:

$\displaystyle \mathcal{F}(\theta_{i},\varphi_{i})=\frac{\partial^{2}E\{\mathbf{...
...{2}\mathbf{S}_{i}}{\partial\varphi_{i}^{2}}\Bigr)\mathcal{J}_{ij}\mathbf{S_{j}}$ (155)

Taking into account the hypothesis that the on-site anisotropy is uniaxial Eq. (A.22), this expression can be reduced to:

$\displaystyle \mathcal{F}(\theta_{i},\varphi_{i})=-\Bigl( \frac{\partial^{2}}{\...
...{2}\mathbf{S}_{i}}{\partial\varphi_{i}^{2}}\Bigr)\mathcal{J}_{ij}\mathbf{S_{j}}$ (156)

Therefore we can calculate the on-site anisotropy constant $ d^{zz}_{i}$ evaluating the free energy at $ \theta_{i}=\pi/2$

$\displaystyle \mathcal{F}(\theta_{i},\varphi_{i})\Bigr\vert _{\theta_{i}=\pi/2}=2d^{zz}_{i}\cos(2\theta)\Bigr\vert _{\theta_{i}=\pi/2}=-2d^{zz}_{i}$ (157)

with

$\displaystyle d^{zz}_{i}=-\frac{1}{2}\mathcal{F}(\theta_{i},\varphi_{i})\Bigr\vert _{\theta_{i}=\pi/2}$ (158)

Rocio Yanes